

Exam 1 Chapters 1 and 2.1-2.2

Answer the following questions. You must show your work to receive full credit. Be sure to make reasonable simplifications. Indicate your final answer with a box.

- 1. Annual sales of music CDs have declined since 2000. Sales were 942.5 million in 2000 and 384.7 million in 2008.
 - (a) (6 points) Find a formula for annual sales, S, in millions of music CDs, as a linear function of the number of years, t, since 2000.
 - (b) (2 points) Give units for and interpret the slope and the vertical intercept of this function.
 - (c) (2 points) Use the formula to predict music CD sales in 2012.

(a)
$$\frac{384.7-942.5}{8} = -69.725$$
 S(+) = 947.5 - 69.725+

2. (5 points) A demand curve is given by 75p + 50q = 300, where p is the price of the product, in dollars, and q is the quantity demanded at that price. Find p- and q-intercepts and interpret them in terms of consumer demand.

- $\bf 3.$ A company produces and sells shirts. The fixed costs are \$7000 and the variable costs are \$5 per shirt.
 - (a) (4 points) Shirts are sold for \$12 each. Find cost and revenue as functions of the quantity of shirts, q.
 - (b) (4 points) The company is considering changing the selling price of the shirts. Demand is q = 2000 40p, where p is price in dollars and q is the number of shirts. What quantity is sold at the current price of \$12?
 - (c) (2 points) What profit is realized at this price of \$12?

(a)
$$C = 58 + 7000$$
 $R = 128$

- 4. A product costs \$80 today. How much will the product cost in t days if the price is reduced by
 - (a) (2 points) \$4 a day
 - (b) (2 points) 5% a day

5. (6 points) The antidepressant Prozac has a half-life of 3 days. What percentage of a dose remains in one day?

$$\frac{1}{2} = e^{k.3} = 7 \quad k = \frac{\ln(1/2)}{3} \approx -0.73$$

$$e^{-0.73} = 0.79 = 7 \quad 79\% \text{ of a dose}$$

- 6. In 1923, koalas were introduced on Kangaroo Island off the coast of Australia. In 1996, the population was 5000. By 2005, the population had grown to 27,000, prompting a debate on how to control their growth and avoid koalas dying of starvation. Assume the koala population grows at a exponential rate.
 - (a) (6 points) Find a formula for the population as a function of the number of years since 1996,
 - (b) (2 points) Estimate the population in the year 2020.
 - (c) (2 points) In what year is the population expected to exceed 100,000?

(a)
$$P = P(t) = 5000 e^{kt}$$

 $P(9) = 77,000 = 5000 e^{k.9}$
 $5.4 = e^{k.9} = 7 k = \frac{(nls.4)}{9} \approx 0.187$
 $P(t) = 5000 e^{0.187t}$

(c)
$$P(24) = 5000 e^{0.187(24)} \approx 444,717$$
.
(c) $100,000 = 5000 e^{0.187t}$
 $20 = e^{0.187t} \implies t = \frac{\ln(20)}{0.187} \approx 16$

- 7. The island of Manhattan was sold for \$24 in 1626.
 - (a) (5 points) How much money would be in the account in 2012 if the yearly interest rate was 5% compounded continuously?
 - (b) (5 points) If the yearly interest rate was 6% compounded annually, in what year would the account be worth one billion dollars?

(a) In years since
$$1676$$
 $A(t)=24e^{iost}$
In $20i2$, $A(386)=5$, 782 , 771 , 743
(6) $A(t)=24(1.06)^{t}$
 $1,000,000,000=24(1.06)^{t}=7t=301.11$

8. Consider the functions f(x) = 5x - 1, $g(x) = e^{2x}$, and $h(x) = x^2 + 8$. Find the following:

(a) (3 points)
$$f \circ g(x)$$

(a)
$$5e^{2x} - 1$$

(b) (3 points)
$$h(x+2)$$

(c) (3 points)
$$h(g(0))$$

$$(c) h(g(0)) = h(1) = 9$$

9. (4 points) Use the variable u for the inside function to express $P = \sqrt{5t^2 + 10}$ as a composite function.

- 10. Consider the function $f(x) = \frac{1}{x}$.
 - (a) (6 points) Find the average velocity between t = 2 and t = 2 + h if:
 - $(i) \quad h = 0.1, \quad (ii) \quad h = 0.01, \quad (iii) \quad h = 0.001.$
 - (b) (4 points) Use your answers to part (a) to estimate the instantaneous velocity of the particle at time t = 1.

(a) (i)
$$\frac{1}{2.1} = -0.238$$

(ii) $\frac{1}{2.01} = -0.249$
(iii) $\frac{1}{2.001} = -0.249$
(iii) $\frac{1}{2.001} = -0.250$

(6) Outputs approach - 4 as h->0 so
expect
$$f'(z) = -\frac{1}{4}$$
.

11. Consider the function g given below.

- (a) (3 points) On what intervals is g positive?
- (b) (3 points) On what intervals in g negative?
- (c) (3 points) On what intervals is g' positive?
- (d) (3 points) On what intervals in g' negative?

9 Positive: (0,1), (7.5,4)

9 negative: (1,2.5)

9 positive: (0,0.4), (1.8,3.4)

9' negative: (0,4,1.8), 13.4,4)

Bonus Question: If you could meet one person in history, who would it be and why?

Isaac Newton because Calculus.